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Abstract: The past decade has seen major improvements, in both speed and 
quality, in the area of interactive rendering. The focus of this article is on the 
evolution of the consumer-level personal graphics processor, since this is now the 
standard platform for most researchers developing new algorithms in the field. 
Instead of a survey approach covering all topics, this article covers the basics and 
then provides a tour of some parts the field. The goals are a firm understanding of 
what newer graphics processors provide and a sense of how different algorithms 
are developed in response to these capabilities. 
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In the past decade 3D graphics accelerators for personal computers have transformed 
from an expensive curiosity to a basic requirement. Along the way the traditional 
interactive rendering pipeline has undergone a major transformation, from a fixed-
function architecture to a programmable stream processor. With faster speeds and new 
functionality have come new ways of thinking about how graphics hardware can be used 
for rendering and other tasks. While expanded capabilities have in some cases simply 
meant that old algorithms could now be run at interactive rates, the performance 
characteristics of the new hardware has also meant that novel approaches to traditional 
problems often yield superior results. 
 
The term “interactive rendering” can have a number of different meanings. Certainly the 
user interfaces for operating systems, photo manipulation capabilities of paint programs, 
and line and text display attributes of CAD drafting programs are all graphical in nature. 
All of these types of 2D graphical elements have benefited, in speed and quality, from 
new graphics hardware developed over the years. However, this article will focus on 3D 
rendering, because that is where much of the recent interest, competition, and progress 
have been. With Apple’s OS X and Microsoft’s upcoming Avalon GUI for Longhorn, 
accelerated 3D features have become an integral part of the operating system’s methods 
of communicating with the user. As an example, high quality texture mapping used on 
3D polygons lends itself well to interactive warping and zooming of 2D images. 
 
Given the depth and breadth of the field of interactive rendering, an article summarizing 
all the significant algorithms and hardware developments in the past ten years would 
become a long yet shallow litany of taxonomies and terms. Instead, a selection of topics 
from various areas is used to illustrate this central theme: the influence of 3D graphics 
hardware on algorithm design. To begin, the main algorithmic principles used for 
interactive rendering are outlined. The evolution of the graphics processor pipeline and 
texturing capabilities are then presented. A few examples of how new techniques have 
been developed in response to these improved capabilities are given. The focus is then on 
two particular areas, environmental lighting and bump mapping, showing how algorithms 



have developed to give higher quality results while still maintaining interactive rendering 
rates. Finally, the overall behavior of current graphics hardware is discussed and future 
possibilities explored. 
 
 
Basic Principles 
 
For interactive rendering the goal is, above all, to present a responsive user experience. 
No technique, no matter how beautiful, can afford to slow the refresh rate lower than 
around 6 frames a second and still be considered interactive. Most video console games 
strive for a minimum of 30 frames or more. A requirement of 60 frames per second yields 
a budget of less than 17 milliseconds per frame. As such, algorithms have to be both fast 
overall and also avoid much variability in rendering time. As an example, two common 
methods for shadow generation are shadow buffers and shadow volumes. Each has its 
own strengths and weaknesses, but one serious flaw of the basic shadow volumes 
technique is that for some camera positions many large polygons must be rendered to 
compute the shadows, while in others a few small polygons are needed. This variability 
in performance can cause an uneven display rate, a problem that the shadow buffer 
technique usually avoids. 
 
Three basic principles of interactive rendering for 3D are approximation, preparation, and 
amortization. Approximation is a basic principle of all computer graphics, as we cannot 
hope to track all photons in their full glory, nor the placement and reactions of all atoms 
to these photons (including those atoms in the eye and brain). The basic building blocks 
of modern interactive rendering are textured triangles with vertex data interpolation. This 
bias towards triangles shows the roots of development of modern PC graphics processors. 
Computer games are the major driving force for the sale of graphics cards, and for the 
most part game developers do not have needs for fast, high quality line and point 
rendering vs., say, CAD or data visualization applications. 
 
Preparation means computing in advance or on the fly various types of data and reusing 
these results. For example, one common technique used for static diffuse shaded 
environments with fixed lighting conditions is to “bake in” some or all of the lighting 
effects, storing a color per vertex in the model or the light’s effect on a surface in a 
texture map. Doing so saves repeatedly computing the identical results frame after frame. 
 
Hand in hand with preparation is the idea of amortization. If during interaction a 
computation can be performed once and reused, its initial cost can be justified by the 
savings it yields over a number of frames it is used. For example, for a given view the 
original model might be replaced by a simplified 3D model or even a 2D image (called an 
impostor). If the view does not change significantly for a series of frames and the 
simplified model can be used, the creation cost is recouped. The idea of amortization is a 
principle important to interactive rendering. In contrast, film rendering systems normally 
use a rendering farm, one processor per frame, and so must reload all data for each 
individual image generated. 
 



 
The Evolving Pipeline 
 
A high-level view of the traditional 3D Z-buffer pipeline is shown in Figure 1. Data from 
the application in the form of vertices of individual polygons (converted to triangles for 
simplicity) is first transformed, shaded, and clipped in the geometry stage. The surviving 
potentially visible triangles are then filled pixel by pixel in the rasterizer stage, using the 
data interpolated from the vertices. 
 

 
 

Figure 1. The traditional pipeline. Each of the three main sections of the pipeline can then 
be further broken down into separate tasks, some of which can be performed in parallel in 

a SIMD or MIMD fashion. 
 
A graphics processor implementing this pipeline obtains much of its performance by 
using both task and data parallelism. The hardware pipeline gains its speed from the same 
concept used on an assembly line. As a simple example, as one stage transforms a 
triangle, another stage rasterizes a different triangle, similar to how one automobile might 
have its engine installed while further down the line another has its doors attached. In 
actual GPU hardware many triangles may be in the pipeline at one time. A single triangle 
may take a fair amount of time to work its way through the whole pipeline, but the 
overall rate at which triangles are processed is much higher, since (ideally) each part of 
the pipeline is active at the same moment. 
 
It is a principle that at any given moment there is always some stage along the pipeline 
that is the bottleneck, one that is slower than every other stage. This bottleneck can 
change, depending on the input data. For example, rendering large polygons can cause 
the rasterizer to be the limiting factor, while rendering meshes of tiny polygons may 
make vertex transformation the bottleneck, Parallelism can be applied in a number of 
ways to improve the performance of a stage in the pipeline. One straightforward method 
is putting a number of units in parallel to transform vertices or to fill triangle pixels. First-
in-first-out (FIFO) buffers are also commonly used between stages to allow temporary 
backlogs and so avoid stalling processing further up the pipeline. 
 
The evolution of PC graphics cards over the 1990s can be seen in terms of going 
backwards up this pipeline. At first it was a thrill to computer graphics researchers that 
they could even display a 24 bit color image on a PC at a reasonable price. The first cards 



to offer 3D acceleration provided a Z-buffer and the ability to rasterize a pre-transformed 
triangle. In 1999 the transform and lighting part of the pipeline moved onto the GPU (and 
this was when the term GPU, Graphics Processing Unit, was introduced). During this 
time some game developers considered this a step backwards, in terms of flexibility, as 
the CPU itself had no limits on what shading model was used to compute vertex colors. 
Graphics hardware offered a fixed-function shading model: ambient, diffuse, Phong 
specular, alpha-blending, fog, and whatever else the graphics API happened to support. 
New features and modes might be available through, say, OpenGL’s extensions 
mechanism, but most developers disliked programming for specific cards. In addition, 
hardware vendors were finding they were devoting noticeable numbers of transistors to 
specialized capabilities.  
 
The response to these problems was the development of programmable vertex and 
fragment processors, arranged in the pipeline as an alternate path from the fixed function 
calls available in the API. See Figure 2. These alternate paths were controlled by 
relatively short programs, commonly called vertex and fragment shaders (or for DirectX, 
pixel shaders). 



 
 

Figure 2. The vertex and fragment processor enhanced pipeline, from the user’s point of 
view. The fixed-function hardware no longer exists in newer GPUs, and the fixed-

function API calls are translated into shader programs by the graphics driver. 
 
Instead of fixed-function shading per vertex, the vertex processor can be programmed to 
perform all sorts of computations. Specifically, a vertex processor works on one vertex of 
a triangle at a time, independent of the other vertices.  The inputs to a vertex processor 
are a set of coordinate values associated with a vertex and a set of constants, meant for 
per-surface properties. The vertex processor program itself consists of a number of 
operators that manipulate these coordinates, typically as vectors (e.g. dot product, 
subtract, normalize). The output is a new vertex, one that can have a new format. At the 
minimum this new vertex consists of an XYZ location, but can also have elements such 



as a normal, colors, and texture coordinates. So, in addition to computing a complex 
shading model, the vertex processor can also deform the model’s geometry in world or 
view space. Among other operations, this functionality is commonly used for skinning, 
an animation technique for joints where a vertex is part of a “skin” that is affected by the 
matrices of two or more nearby “bones”. The costs of computing such vertices’ locations 
each frame is thus offloaded from the CPU to the GPU. 
 
The introduction of the vertex processor was a fairly natural evolution of the pipeline. If a 
vertex processor is not available on the GPU, or the GPU does not support the length or 
command set of the vertex program provided, the CPU can perform the computations 
instead and then pass in the processed vertex data to the graphics card. In comparison, the 
fragment processor allows operations that are available only if the graphics hardware 
exists; a CPU-side software emulation of this functionality is much, much slower, if 
available at all. While the CPU can often keep up with transforming the thousands of 
vertices in a typical frame, it cannot keep up with processing the millions of pixel 
fragments generated. 
 
The fragment (a.k.a. pixel) processor does for pixels what the vertex processor does for 
vertices, with a few differences. The vertex processor or fixed-function pipeline generates 
data for the three vertices of a triangle. After culling and clipping, triangle setup occurs, 
in which data is readied to interpolate across the surface of the triangle. After 
interpolation the fragment processor comes into play. As each pixel that the triangle 
covers is evaluated, the fragment processor can access a set of values interpolated from 
the vertex data, as well as stored constant data. Similar to the vertex processor, the 
fragment processor’s program manipulates these values, deciding whether to output a 
pixel fragment to the Z-buffer, and if so, then computing the RGB and optionally the Z-
depth of this fragment. The fragment processor is evaluated at every pixel covered. 
 
This power can directly lead to improved image quality. For example, instead of standard 
Gouraud shading, which interpolates the light’s contribution at each vertex, a shader can 
use higher quality per-pixel Phong shading, which directly computes the light’s 
contribution at each pixel. The idea of approximation comes into play here. Some design 
decisions include whether the normal interpolated among the vertices should be 
renormalized per pixel, and whether the light’s direction should be computed per pixel or 
approximated by interpolation. Shorter fragment shader programs run faster; fragment 
processors provide more options, but also bring up more speed vs. quality questions. 
 
Fragment processors have an additional resource available that (older) vertex processors 
do not: texture access. The fragment processor can use the texture coordinate values to 
access textures and use the retrieved values in succeeding steps of its program. Using the 
results of one texture access to influence another is called a dependent texture read. The 
next section discusses this idea in more depth. Older GPUs have limitations on the ability 
to perform dependent texture reads that have been eliminated in newer processors. 
 
One goal for the designers of fragment and vertex processors has been to make these two 
separate languages converge into one. For example, originally vertex processors used 



floating point numbers for their input and output, while fragment processors were limited 
to fixed point values with few bits. Over time the fragment processor has evolved to the 
point where it can handle full floating-point math throughout, as well as a plethora of 
different fixed point formats. Greater precision helps even simple shader programs avoid 
computation artifacts such as color banding. Also, high dynamic range (HDR) 
environment textures can be represented, so allowing more realistic reflections. In 
addition, the fragment processor can now render to more than just a single output frame 
buffer, instead sending results to up to four render targets. These in turn can be used as 
input textures for further computations. 
 
It turns out that having dependent texture reads and high precision pixels are two key 
capabilities needed to compute more complex shading equations. Every shading equation 
can be broken down into a series of terms that are multiplied or added together, and so 
each term can be computed, saved in an off-screen image, and these images then 
combined --- a multi-pass render. Texture lookups can be used to replace particularly 
complex functions by using texture coordinates as inputs. Calling the additional vertex 
data “texturing coordinates” is almost archaic, as these values are currently used for much 
more than just texturing. They are good places to store any information that varies slowly 
over a surface and that is to be interpolated at each pixel. The standard today is to 
interpolate every value in a perspective-correct manner, i.e. that interpolation is linear in 
object space. 
 
Over the years, the instruction sets of both fragment and vertex processors have been 
significantly increased and have converged. The initial offerings did not allow any type 
of flow control such as static or dynamic if-statements, for-loops, or subroutines. These 
features have been introduced over time to both types of shaders. Also, the number of 
instructions in both shaders has been increased to 65,536 with the introduction of 
DirectX’s Shader Model 3.0 in 2004. 
 
Because vertex and fragment processors are now more than powerful enough to do 
everything that the fixed function pipeline used to do, graphics hardware no longer needs 
to have the fixed function parts of the pipeline as physically separate components on the 
chip. The traditional calls in the DirectX and OpenGL APIs are now simply converted 
internally by the driver to corresponding vertex and fragment programs. 
 
A huge number of shading methods have grown out of these qualitative changes in the 
pipeline, more than can possibly be covered here. For example, most shaders written for 
RenderMan can be implemented directly on graphics hardware, given enough time per 
frame. The CPU and GPU are simply different types of Turing-complete programmable 
hardware, each with its own strengths and weaknesses. 
 
At first the new flexibility of the GPU was controlled by elaborate sets of API calls. This 
cumbersome interface was soon superseded by assembly language commands that 
worked on scalars and vectors. In recent years more natural languages such as DirectX 
9’s HLSL (high-level shading language) have been developed. Coding support tools such 
as debuggers and profilers are taken for granted when programming a CPU. With the rise 



of the GPU the creation of similar tools is an active area of research and development 
[Duca05]. At the same time, specialized code development tools have also been created 
for the GPU, such as shader designers like ATI’s RenderMonkey and NVIDIA’s FX 
Composer. 
 
 
Texturing Advances 
 
One of the first advantages graphics hardware offered over software was fast texturing. In 
late 1996 3dfx brought out its Voodoo chipset. This offering is considered by many the 
start of 3D acceleration for the PC. There were earlier cards by other companies, but this 
was arguably the first PC graphics card that was more an accelerator than decelerator, 
being at least 4 times faster than its closest competitor [Hudon03]. 
 
Around this time new ideas also began to appear, the most significant being multi-pass 
texturing, in which two or more textures affect a single surface. Each texture is applied to 
the surface in a separate rendering pass, with successive passes adding or multiplying its 
texture’s contents with the previous off-screen image produced, with the final result then 
displayed. 
 
One common early use of this technique was for light mapping, where a high-resolution 
surface texture such as a brick wall pattern would have a low-resolution grayscale 
lighting texture applied to it. In this way precomputed or artistically created lighting 
patterns could be added to repetitive wall patterns to give more visual interest and realism 
to a scene. The high-resolution brick pattern could be repeated without using additional 
memory, while the low-resolution lighting patterns could vary from wall to wall with 
little extra cost. See Figure 3. 
 

 
 
Figure 3. A wall texture is combined with a light map texture to give a lit wall. (Courtesy 

of J.L. Mitchell, M. Tatro, and I. Bullard) 
 
 
The idea of applying two textures to the same surface has many other uses: adding decals 
to objects, adding visual detail to terrain, etc. This concept was general enough that 
graphics hardware (e.g. 3dfx’s Voodoo2, in 1998) was developed that supported 
multitexturing, where two textures could be applied to a surface in a single rendering 
pass. Doing so is considerably faster than performing a multipass rendering, as the 



geometry has to be transformed only once. Over the years the number of textures that can 
be applied to a surface in a single pass has increased to 3, 4, 6, 8, and higher; currently 16 
is the maximum. Each texture can have its own set of coordinates defined and 
interpolated on a single surface, and the resulting values can be combined by addition, 
multiplication, compositing, and more. In fact, one of the driving forces for adding 
fragment processors was the desire for more flexibility in combining textures and 
interpolated data, once it was shown that even simple per-pixel expressions could make a 
major difference in image quality. 
 
One new texturing method that arose purely from graphics hardware research is dot 
product bump mapping. The idea is that, instead of a texture holding color information, it 
actually holds the surface normal at each location. The red/green/blue values of 0-255 are 
mapped to correspond to normal vector X/Y/Z directions of -1.0 to 1.0. So, for example, 
(58, 128, 235) would correspond to a vector (-0.65, 0.00, 0.84). See Figure 4.  
 

    
 
Figure 4. On the left, a normal map’s vector values shown as RGB. On right, the results. 

(Courtesy of NVIDIA Corp.) 
 
Two tangent vectors are also stored for each vertex, specifying how the normal map 
relates to the surface. In traditional Gouraud interpolation the shade of each vertex is 
computed, then these colors are interpolated across the surface. For dot product bump 
mapping the vector to the light is computed at each vertex. This vector must be computed 
relative to the surface’s orientation, and this is where the tangent vectors come into play. 
The two tangent vectors and the surface normal at the vertex form a frame of reference, a 
basis, into which the light vector is transformed. After this transformation the light vector 
points towards the light relative to the surface’s orientation.  
 
The diffuse contribution for any location is computed using the light vector and the 
surface’s shading normal. So, instead of an RGB per vertex, the differing light vectors, 
one per vertex, are interpolated. The texture coordinates are also interpolated across the 
surface, as with regular texture mapping. At each point on the surface we then have a 
texture location and a light vector. The texture coordinates are used to retrieve the 
surface’s normal from the normal map. The dot product of the light vector and the bump 
map’s normal is then the diffuse shade of the surface at that point. 
 
This idea of interpolating or looking up values in textures that are not colors and 
combining them in different ways was an important developmental step. Elaborate effects 



could be achieved by combining multitexturing with more flexible ways of accessing 
data. For example, dot product mapping can be extended to generate specular highlights 
by also transforming and interpolating the relative direction of the eye vector per vertex 
and factoring in its effect. 
 
 
New Algorithms 
 
Perhaps one of the most exciting elements of computer graphics is that some of the 
ground rules change over time. Physical and perceptual laws are fixed, but what was once 
an optimal algorithm may fall by the wayside due to changes in hardware, both on the 
CPU and GPU. This gives the field vibrancy: assumptions must be constantly 
reexamined, new capabilities exploited, and old ways discarded. 
 
As an example, consider a relatively simple problem and two solutions. Say you have a 
lens flare effect you apply whenever the sun is visible in your scene. You want to 
attenuate the flare by how much of the sun is visible on the screen, with the sun itself 
fitting inside a 16x16 pixel area. The traditional solution would be to render the sun into 
the scene, then read back this screen area to the CPU and count the number of pixels 
which have the sun’s color, then use this proportion to attenuate the lens flare’s 
brightness. However, as Maughan [Maughan2001] points out, reading the frame buffer 
causes a large time loss, as it stalls the graphics pipeline due to the cost of asynchronous 
communication of screen data back to the CPU. It is actually much faster to keep 
everything on the GPU. So a much faster solution is to first render the scene as black and 
the sun as white to a separate 16x16 image. Use each of this texture’s pixels in turn to 
color 256 point sprites that are rendered to a 1x1 image, so accumulating a level of 
intensity each time a white sun pixel is visible. This 1x1 image is then used to multiply 
the incoming lens flare, so attenuating it when rendered. 
 
The effect of the pipeline’s architecture and limitations is the major challenge for 
researchers attempting to use the incredible speed of the GPU. One way to think of the 
CPU/GPU pipeline is as a canoe in a rushing river: stay in the current by progressing 
down the pipeline in a normal way and you move along rapidly. Trying to go another 
less-used direction, e.g. back to the CPU, is a much slower proposition. 
 
There are a huge number of new techniques that have been developed due the increase in 
functionality of newer graphics hardware. With vertex and fragment processors now 
having an almost unlimited number of steps available, a fair number of traditional 
rendering algorithms can be done at interactive rates. Just a very few of the new ways of 
using graphics hardware to render images are discussed here, to give a flavor of the way 
algorithms have changed in response to improvements on the GPU. 
 
An excellent example of this phenomenon is fur rendering. Lengyel et al. [Lengyel2000] 
developed a number of techniques to aid in rendering short-haired fur on surfaces. Some 
are straightforward, such as using a level-of-detail algorithm to render a simple single-



texture representation of the fur when the model is far away, blending with a more 
complex model as the object comes nearer. 
 
When close to the furry object, imagine your model consists of not a single surface but a 
series of concentric shells, with the innermost shell being the original model (essentially 
the skin). Have the other shells capture where the hairs of the fur are located; that is, 
imagine each hair poking through the shells and record the location of this hair on each 
shell it pierces. If you now rendered these shells as semitransparent textured polygons in 
a consistent back-to-front order, you get a furry effect. 
 
Using the vertex processor, it is simple to make fairly reasonable concentric shells. For 
each shell, the model is sent through a vertex processor that moves all the polygon 
vertices outwards a distance along each vertex normal. Doing so by regular steps gives a 
set of concentric models, all generated from a single model. 
 
However, this technique does not look convincing around the silhouette edges, as the 
gaps between the textured shells make the fur strands break up and fade out. This 
problem is addressed by adding “fins” along the silhouette edges of the model and 
texturing these with a fur texture seen from the side. Finding the silhouette edge on the 
CPU can be an expensive operation, but can be solved by a clever use of the vertex 
processor: send all edges of the mesh through the pipeline, with the two neighboring 
polygon normals included in the data sent. If an edge is found by the vertex processor to 
be a silhouette edge (because one of its polygon normals faces the eye and the other faces 
away), that edge should be extruded into a quadrilateral fin and rendered. 
 
Since vertex processors cannot create new vertices, each edge has to be sent as two 
coincident edges to form a zero-area quadrilateral and extruded as needed. Edges not 
extruded affect nothing, as these cover no pixels. This all sounds complex, but because of 
the fantastically high vertex transform and fill rates of modern GPUs it all happens 
extremely rapidly. See Figure 5. 
 

 
 

Figure 5. Concentric shells of layered fur textures and silhouette edge fins produce a 
convincing simulation of fur. (Courtesy of John Isidoro, ATI Technologies Inc.) 

 



DirectX 10, which will be released by 2006, has a new element called the geometry 
shader, which can process data coming from the vertex processor. A geometry shader can 
create new vertices. So, instead of having to store degenerate quadrilaterals for every 
edge, just the edge itself will need to be sent down the pipeline. If the edge is found to be 
a silhouette edge, two more vertices are generated and a quadrilateral is created. 
 
One interactive application area that has opened up with graphics hardware advances is 
image processing. Since a single texture can be accessed multiple times for a single 
fragment and the results can be processed with a fragment processor, operations such as 
filtering and edge detection can be performed rapidly. As an example, see Figure 6. What 
has been done here is to take a traditionally shaded scene and render it with a non-
photorealistic cel-shading effect. This effect is performed by rendering different versions 
of the scene, one with a different color per object, another which stores the normal at 
each pixel, along with a Z-buffer depth “image”. By painting any object, normal, or Z-
depth discontinuity black, a cel shaded version of the scene is created. Line thickness can 
be increased by an additional pass that samples each pixel’s neighbors and outputs the 
darkest value found. 
 

 
 
Figure 6. Cel-shaded cartoon style of a model by using edge detection. The left image has 
edges found from a normal map, the middle image from z-depth difference, and the right 

is the thickened composite (Courtesy of Jason Mitchell, ATI Technologies Inc.) 
 
More interesting still is the realization that textures can be used to store 3D geometry. 
One area of research has been to ray trace scenes by using the GPU to test sets of rays 
(each represented by an origin and direction vector, each of which in turn is a pixel’s 
worth of data in a texture) against triangles, spheres, or other primitives (which again can 
each be stored as a few pixels’ worth of data). In the past year two different open source 
projects have implemented ray tracing on the GPU (visit gpgpu.org). This research 
pushes the limits of what is possible on a GPU, and the performance is often at best 
comparable to that of CPU-side ray tracers. Recent work by Woop et al. [Woop05] 
explores how some relatively small additions to current GPU hardware could make it 
work better as a ray tracing engine. 
 
 
Lighting and Shading Advances 
 



Vertex and fragment processing, dependent texture reads, floating point math, and other 
graphics hardware advances have made a plethora of new techniques available for use at 
interactive rates. In particular, the research area of soft shadows has seen a large amount 
of activity. A thorough survey article by Hasenfratz et al. [Hasenfratz03] summarizes 
work in this field up through 2003, though there has been noticeable activity since then. 
Other rendering effects have been developed, such as glows, volumetric fog, various 
kinds of reflection and refractions, as well as a wide range of non-photorealistic effects. 
Algorithms for more realistic depictions of a wide range of materials, such as skin, water, 
and woven cloth, have been tailored for interactive computation. Exhaustive coverage of 
all of these effects is well beyond the space limits of this journal. The goal here is to 
show how translation of algorithms from the CPU to the GPU can result in new ways of 
rendering images. 
 
Towards this end, it is worth examining the evolution of basic ideas behind the new field 
of precomputed radiance transfer (PRT) [Sloan2002]. PRT attacks a difficult problem in 
the area of interactive global illumination: how to shade an object lit with arbitrarily 
complex lighting, properly accounting for shadows and interreflections among surfaces, 
with the object and lighting changing over time, and all updating at interactive rates. 
Previous work had attacked various combinations of these elements, e.g. various soft-
shadow algorithms have been developed for area light sources, but not for lighting from, 
say, a surrounding environment map. 
 
There are a few different concepts that PRT builds upon. These include environment 
mapping, irradiance mapping, spherical harmonics, and ambient occlusion. Each of these 
will be explained in turn, as this progression follows how theory and practice have 
evolved over the past few years. 
 
Another way that a texture can be applied to a surface is as an environment or reflection 
map. Technically, a reflection map is an environment map modified by the surface’s 
attributes, but the two terms are often used interchangeably. The texture itself is a 
representation of the environment surrounding the objects in the scene. This texture is 
accessed by computing a reflection vector from each point on the surface and mapping 
that direction to a location on the texture, so making the surface appear shiny. Using an 
environment map is a good approximation of mirror reflection if the shiny object is far 
enough away from the surrounding environment, so that the reflector’s location has 
relatively little effect on what is reflected and only the surface normal is needed. 
 
Originally spherical texture mapping was the only environment mapping type supported 
in graphics hardware. It could also be supported on the CPU by computing and 
converting reflection vectors into vertex texture coordinates and interpolating these. A 
spherical environment map is equivalent to a view of the environment as seen in a 
mirrored ball. In fact, many real-world environment maps are generated by 
photographing the equivalent of a shiny Christmas-tree silver ball. See Figure 7. 
 



 
 
Figure 7: Spherical environment map of St. Peter’s Basilica. (Courtesy of Paul Debevec) 

 
In 1999 NVIDIA introduced the GeForce 256, the first consumer-level (i.e. game) card to 
include cubic environment mapping. Instead of a single texture capturing the 
environment, six were used, one on each face of a cube. Imagine an observer looking 
around from some location. To capture exactly what the world looks like from this single 
point, he can take six photos with a 90 degree field of view, 
up/down/right/left/front/back. To access this set of images, use the reflection direction 
vector to choose the correct texture among these six and find the pixel data in the 
corresponding direction. 
 
While this method could be used with sets of real-world photographs, its greater strengths 
come from its symmetry and its use in synthetic environments. First, the method works 
well for any view direction. In contrast, sphere mapping normally forces the sphere 
texture to face the eye, to avoid distortion and other artifacts.  The other great advantage 
is that the six faces of the cube map can easily be created on the fly by the graphics 
hardware itself. For example, in an automobile simulation, as the car moves, the 
surrounding environment can be rendered into a cubic texture and the resulting map then 
used for reflections off the car’s body. Even reflections of reflections can be simulated, 



using environment maps on nearby shiny objects when generating a new cube map. See 
Figure 8 for an example, which is combined with the technique of creating planar 
reflections by mirroring the scene and rendering it through each reflective plane. 
 

 
 

Figure 8. Environment map on the sphere, along with flipping the scene “through the 
looking-glass,” used recursively to create reflections of reflections (Courtesy of Kasper 

Høy Nielsen) 
 
An interesting interaction between cubic reflection maps and dot product maps illustrates 
the beginning of a trend: the use of textures for function computation. One problem 
encountered with interpolating data between vertices is that vector length is not 
maintained. That is, if you linearly interpolate between the coordinates of two unit 
vectors, such as the light vectors used in dot product bump mapping, any interpolated 
vector will be shorter than the original vectors. Interpolating in this way can give 
noticeable shading artifacts. A clever technique to renormalize the vector is to use a 
special cubic map, one in which each location’s data stores a normalized version of the 
direction vector pointing from the viewer to that location. Feeding this cubic texture an 
unnormalized vector will yield a normalized vector in the same direction, which can then 
be used with the dot product normal retrieved to perform shading correctly. This 
renormalization method is no longer necessary in newer GPUs, as this process can now 
be done efficiently inside a fragment processor. However, the underlying concept is still 
valid, that texture lookup can approximate many functions that might not be directly 
supported by the graphics hardware. 



The idea behind an environment map is that each pixel in it captures the radiance coming 
from a specific direction, what would be seen reflected off a perfect mirror. By filtering 
the environment map in advance, essentially making it blurry, the same map can then be 
used to give a surface a roughened, glossy appearance instead of a mirrored one. This 
method is not particularly physically accurate, but can be perceptually convincing. 
 
A reflection map is accessed by using the direction from the eye to the surface and the 
surface normal itself. Shininess is view-dependent. The diffuse component of shading is 
view-independent. So, given a set of lights sufficiently far away, the light contribution is 
entirely dependent on the diffuse surface’s normal. Imagine an object surrounded by an 
environment map. Finding the direct lighting at each point on the object is a 
straightforward, though somewhat arduous task: treat each texel on the environment map 
as a light source. For each vertex, the effect of each texel is weighted by the cosine of the 
angle between the vertex normal and the direction and solid angle of the texel. Summed 
up, this is the contribution of the environment map to a surface location with a particular 
normal direction. By doing so, all possible diffuse illumination values from a given 
environment map can be precomputed and stored in another environment map, accessed 
by the surface normal direction. See Figure 9. 
 
This type of texture is called an irradiance map. It is essentially a filtered environment 
map that records the amount of light coming from a hemisphere over the surface, 
weighted by the angle away from the normal. During rendering the surface’s normal 
accesses this map and retrieves how much each light in the environment affects the 
surface at this orientation. This is an extremely useful technique, as a single map can 
represent elaborate lighting effects from the surrounding environment. 
 

   



 
Figure 9. A cubic environment map of Grace Cathedral and its corresponding irradiance 

map. (Courtesy of Paul Debevec) 
 
 
Ramamoorthi and Hanrahan [Ramamoorthi01] realized in 2001 that spherical harmonics 
could be used to represent irradiance maps with fairly high fidelity. An entire irradiance 
map could be represented by 9 RGB triplets and be accurate to within an average of 1% 
error of the original. This technique gives a huge (though lossy) compression factor over 
storing the original irradiance map as a texture. Determining the light contribution for a 
particular surface normal is done by evaluating a quadratic polynomial in the coordinates 
of the normal. 
 
This approximation works because the original irradiance map is normally a slowly 
varying function with few high frequencies; in other words, it looks extremely blurry. 
Spherical harmonics are something of a spherical analogue of a Fourier series. Just as a 
1D signal can be reconstructed by a series of scaled and shifted sine waves of different 
frequencies, an image on a sphere can be approximated by a series of spherical 
harmonics. Also similar to Fourier series, if the image has no sharp changes, i.e. no high 
frequencies, then it can be represented by fewer terms in the sequence of spherical 
harmonics. 
 
Another concept related to precomputed radiance transfer is the idea of ambient 
occlusion. In its simplest form, ambient occlusion uses a ray tracing preprocess to imitate 
the effect of self-shadowing on a surface. Specifically, a set of rays representing a 
hemisphere is sent out from some point on the surface. If a ray hits something nearby, 
light from that general direction is likely to be blocked; if the ray hits nothing on the 
object, light is likely to be unblocked. The rays’ contributions are then summed in some 
fashion and a rough estimate of how much light is blocked from the environment is 
obtained. For interactive rendering, this attenuation factor is stored per vertex and used to 
lessen the effect of lighting as needed. The net effect is to give more definition and 
realism to cracks and crevices. For example, areas around the ears and nose of a head 
model will become darker. 
 
However, for the most part this technique is performing a wild guess. Areas with some 
self-shadowing are darker, but they are darkened the same regardless of changing lighting 
conditions, even for when a single light is directly illuminating them. At best the effect is 
a weak approximation to reality. 
 
PRT draws its strength from all of these ideas and more. As a preprocess, a sampling of 
each vertex on a model with rays is done similarly to ambient occlusion, but with a 
different goal in mind. Instead of a single number, what is created for each vertex is a 
spherical harmonic representation. This representation approximates the way that 
radiance would be transferred to the surface. It is independent of the actual lighting 
conditions. A vertex that is entirely unoccluded would have a spherical harmonic 
representation that approximates a cosine distribution for a standard diffuse surface, i.e. 



the classic Lambertian diffuse term. Occluded vertices have a different set of spherical 
harmonic values, representing the fact that parts of their view of the hemisphere above 
them is occluded. Figure 10 shows an example. 
 

 
 

Figure 10. The spherical harmonic radiance transfer function created for a single point 
under the handle. The crease is due to occlusion from the handle. (Courtesy of Chris Oat, 

ATI Technologies Inc.) 
 
 
Having spherical harmonics represent purely direct illumination would be a poor 
approximation, since there are sharp discontinuities in the function due to self-occlusion. 
By computing the effect of interreflection among surfaces, these discontinuities are 
reduced and so spherical harmonics becomes a more reasonable approximation. 
Interreflection is computed by shooting more rays from each vertex and computing the 
radiance transfer for the places hit on the surface, by interpolating their transfer values. 
This result is then factored into each vertex, so modify its spherical harmonic values to 
now include how radiance is transferred by bouncing off occluding surfaces. This process 
can be repeated any number of times to compute light from two, three, or more 
interreflections. 
 
With a set of spherical harmonics representing the radiance transfer at each vertex, and a 
spherical harmonic representation of the environment map itself, the lighting of the object 
can be computed instantly. See Figure 11 for an example. The two spherical harmonic 
sets can be combined at each vertex by a simple series of dot products, yielding the color 
of the vertex. This basic property, that the two spherical harmonic representations can be 
combined rapidly on-the-fly on the GPU, gives rise to a number of extensions. For 
example, rotating the object is relatively quick, as the spherical harmonics do not have to 
be recomputed from scratch but rather can be transformed to a new set of spherical 
harmonics. 



  
 

Figure 11. Head rendered with standard diffuse shading and with PRT. (Courtesy of 
Peter-Pike Sloan, Microsoft Inc.) 

 
Object translation can also be handled. For example, instead of a single environment map 
representing the lights far away, environment maps are generated for specific locations in 
space. Each environment map is then more of a light field, a representation of all the light 
passing through a point in space. These representations can be converted to irradiance 
maps, which are in turn converted to spherical harmonic sets. As the object moves 
through space, a spherical harmonic set representing the approximate irradiance map is 
interpolated from the surrounding sets and used as before [Oat2005]. 
 
Research in this area has proceeded apace. Shiny objects can also be dealt with 
interactively by extending the basic idea, but because of view dependency the storage and 
precomputation requirements go up considerably. Local light sources can be made to 
work with the method, as well as deformable surfaces, again with higher costs. 
Subsurface scattering, a phenomenon where photons travel some distance through the 
material (examples include skin and marble), can also be simulated using PRT 
techniques. In fact, any light transfer function, such as dispersion or caustics, that can be 
computed can then be compressed and stored using some set of basis functions. 
 
Using a spherical harmonic basis for illumination is just one way to store radiance 
transfer. For example, while Bungie Studio’s game Halo 2 used a spherical harmonic 
basis, Valve’s Half-Life 2 uses a more standard Cartesian basis using a method called the 
ambient cube [McTaggart04]. What is exciting about all this work is that it is a different 
way of thinking about the problem, one that leverages the capabilities of the GPU. 
 
 
Improved Bump Mapping 
 



To conclude this brief survey of new shading algorithms, we will revisit the problem of 
making a surface appear bumpy. Dot product bump mapping is a technique that was first 
described around 1998 and which started making it into games in 2004. The delay is 
understandable, as it took awhile for the graphics hardware to become relatively common 
and fast enough, for software providers to create tools to deal with such textures, and for 
developers to integrate this functionality into their production processes. In the meantime, 
there have been a number of new schemes developed for creating more realistic bumps 
on surfaces. The two we will discuss here are parallax occlusion mapping and vertex 
textures. 
 
A problem with bump mapping in general is that the bumps never block each other. If 
you look along a real brick wall, for example, at some angle you will not see the mortar 
between the bricks. A bump map of the wall will never show this type of occlusion, as it 
merely varies the normal. It would be better to have the bumps actually affect which 
location on the surface is rendered at each pixel. 
 
A traditional solution used in high-end, off-line rendering is displacement mapping. 
Imagine that a square with a bump map is tessellated into a grid of triangles and each 
vertex is varied in height, instead of being geometrically flat. This mesh represents a truly 
geometrically bumpy surface. However, this method is a poor fit for GPUs, as part of 
their design results in a sweet spot of pixels per triangle. A huge number of tiny triangles 
will force some part of the geometry section of the pipeline to be the bottleneck, and the 
enormous speed of the rasterizing section will then be mostly unused and so be wasted. 
As such, other approaches have been explored to render self-occlusion more efficiently. 
The first GPU-oriented algorithm attacking this problem was from Kaneko et al. in 2001 
[Kaneko01], and a number of others have been developed since then. 
 
Brawley and Tatarchuk’s parallax occlusion mapping approach [Brawley04] is relatively 
straightforward to describe and gives a flavor of how fragment shaders and texture access 
can be used to improve image appearance. Consider a square with a height field applied 
as a texture. Say the lowest altitude of this height field corresponded to the location of the 
original, flat square. Any points at this lowest altitude are on the original square, 
regardless of viewing angle. 
 
Now imagine looking at the original square at a shallow angle through a single pixel. 
There is a lowest altitude point that is visible on this square. A real, geometric height 
field usually has the effect of occluding this lowest point with some geometry that is 
closer to the eye.  In parallax occlusion mapping the square (or any other surface) has a 
texture applied to it that holds a height field. The eye direction is projected onto this 
height field texture. Where this projected vector falls forms a line on the height field 
texture. By walking this line and checking the height of the height field at each step, the 
height field location that actually blocks the pixel can be determined. See Figure 12. 



 
 

Figure 12. Parallax occlusion mapping. The green eye ray is projected onto the surface 
plane, which is sampled at regular intervals (the pink dots) and heights retrieved. The 

algorithm finds the first intersection of the eye ray with the black line segments 
approximating the height field. 

 
The angle between the eye and the surface (as well as the relative height range of the 
height field) determines the length of the projected eye vector. That is, at shallow angles 
to the surface, the number of height field texture locations that could influence the result 
is increased; at steep angles (looking down on the square), fewer height field locations 
are needed along this line. 
 
In a traditional ray tracer a ray would walk through the grid forming the height field, 
checking intersection with the relevant geometry. Instead, this GPU-based algorithm tests 
a fixed number of texture samples along the projected vector. Each texture location is 
retrieved and processed to determine if it is visible, and the interpolated location and 
corresponding information is used to shade the surface instead of the original texture 
location. This algorithm is a clever mix of ideas, playing to the strengths of current GPUs 
by using more fragment processing on a single surface. The length of the vector usually 
limits the number of height field locations that could influence the result to something 
manageable. The texturing capabilities of the GPU are then used to sample these height 
field locations. This same technique can be used to have the bumpy surface cast shadows 
onto itself. See Figure 13. 
 



 
 
Figure 13. Height field rendering using parallax occlusion mapping (Courtesy of Natalya 

Tatarchuk, ATI Technologies Inc.) 
 
There are some limitations to this technique. At shallow angles the number of height field 
locations that should be sampled may exceed the number of texture retrievals that can be 
done by the fragment shader. However, the algorithm can be extended to adaptively 
sample the surface in these cases [Tatarchuk05]. Also, as there is no real displacement of 
the surface itself, the illusion breaks down along the silhouette edges of objects, which 
will show the original surface’s smooth outlines. Oliveira and Policarpo [Oliveira05] 
attack this problem by warping the ray’s sample path by the local curvature of the surface 
and discarding any fragments found to be off of the surface.  
 
One graphics hardware development in 2004 was that vertex processors gained the ability 
to access texture data. This functionality can be used for true displacement mapping: each 
vertex on a mesh can be shifted by a heightfield texture. Doing so solves the silhouette 
edge problem by brute force. Data transfer and storage costs are also minimized by using 
a simple height field texture. However, this functionality comes at the expense of needing 
state-of-the-art graphics hardware to perform this algorithm, as well as the need for more 
vertex processing power. 
 
This new hardware feature also means that now fragment processors can render to 
textures which can then be accessed by vertex processors. Collisions between objects can 



truly deform the objects simply by painting the colliding areas onto the texture [Wrotek]. 
Also, fragment processors can generate XYZ coordinate values, which the vertex 
processor then accesses to generate sprites for particle systems [Kipfer04]. Another idea 
is to use the vertex texture as a guide for how and where to place actual geometric 
elements, such as grass and leaves [Tresniak05]. There are undoubtedly more 
applications that will arise from this new functionality as programmers come to 
understand its capabilities. The key insight is that this feature closes the loop between the 
high computational power of the fragment units and the addressing capability of the 
rasterizer, and allows more complex operations to be performed. For instance, the GPU 
can compute something in the fragment unit, and then in another pass write that data into 
an arbitrary pixel using a vertex program. This is called a scatter operation, and is 
important in building GPU-based data structures. For example, Purcell et al. [Purcell03] 
make use of the scatter operation to perform photon mapping on the GPU. 
 
 
Further Up the Pipeline 
 
The major focus of this tour is about how vertex and fragment processors, combined with 
rapid texture access and filtering, have brought about changes in the way we think about 
and program interactive applications. It is worth revisiting the evolution of the pipeline at 
this point to discuss a few graphics hardware developments in other areas. 
 
As noted earlier, the evolution of the GPU started from the end of the pipeline and went 
backwards. First display, then rasterization, then triangle setup, then geometric operations 
on incoming vertex data were each moved to specialized graphics hardware. The question 
is always what makes sense to leave on the flexible but relatively slow CPU, and what is 
worth committing to fixed but fast GPU functionality. Adding programmability to the 
GPU changes this balance, with specialized processor functions being able to be used for 
a wider range of tasks. 
 
Additional memory also affects this mix. Memory was once simply for the final image 
that would be displayed. Usability improved with the addition of double-buffering, but so 
did memory requirements. Then Z-buffer memory was added for 3D computation, along 
with stencil buffer memory (today usually 8 bits, with the Z-buffer taking the other 24 
bits in the 32 bit word). By the late 1990’s, memory became a more flexible resource, 
something that could be doled out to provide various rendering modes, trading off screen 
resolution, color and Z-buffer precision, etc. Eventually there was enough memory 
available that current cards have plenty to have a double-buffered display with Z-buffer 
and stencil buffer at full 24 bit color at any resolution. 
 
Interactive graphics is sometimes considered a bottomless pit when it comes to resources, 
and memory is not exempted. Beyond the memory needed for the Z-buffer, memory is 
also required for storing textures. To save texture storage space (and, more importantly, 
bandwidth), a graphics hardware-friendly class of compression algorithms, called DXTC 
in DirectX, have been developed. Finally, geometry data can also be moved to the GPU’s 



memory and be reused. Vertex and fragment processors can be used to vary the 
appearance of this data from frame to frame or object to object. 
 
For display, the only drawback of using more memory is that higher resolution and color 
depth cost performance. While processors have continued to increase in speed at a rate in 
keeping with Moore’s Law, and graphics pipelines have actually exceeded this rate 
[Lastra99], memory bandwidth and latency have not kept up. Bandwidth is the rate at 
which data can be transferred, and latency is the time between request and retrieval. 
While the capability of a processor has been going up 71% per year, DRAM bandwidth is 
increasing about 25% and latency a mere 5% [Owens05]. What this means is that with 
the latest GPU processors you can do about 12 FLOPS in the time you can access a single 
word of floating point texture data. Processing power is becoming less and less the 
bottleneck as these trends continue. 
 
Beyond improving the efficiency of memory access itself, there are a number of 
techniques that have been developed to avoid or minimize memory access when possible. 
A Z-buffer operation on a single fragment causes the pixel’s Z-depth memory to be read, 
compared to the incoming Z-depth value, and then possibly replaced by this new value, 
as well as affecting the color and stencil buffers. If the incoming Z-depth value was not 
closer, in other words the triangle being rendered is not visible, the operation of testing 
the Z-depth has no actual effect on the image. 
 
The ideal situation would be one in which only those triangles visible in a scene are 
processed by the pipeline. On a triangle-by-triangle level the pipeline has long provided 
clipping (always needed) and backface culling (used to throw away polygons in solid 
objects that face away from the viewer). The third area, not exploited until recently, is 
occlusion culling. 
 
One passive example of this sort of occlusion is HyperZ technology (ATI’s name; 
NVIDIA has its own version), which avoids touching memory by treating sets of pixels 
as tiles. For example, call an 8x8 set of pixels a tile, and think of the screen as being 
made of a grid of tiles. If the rasterizer determines that a tile overlapping the polygon to 
be drawn is already entirely covered by nearer objects, then the part of the polygon in this 
tile does not have to be rasterized but can be rejected as a whole, so saving unneeded 
fragment processing and memory costs. Bandwidth is also saved by losslessly 
compressing the Z values in the tile itself. More actively, if a developer renders the scene 
roughly sorted from front to back, he will further avoid performing pixel operations 
unnecessarily, as the closer objects will help hide those further away. This technology 
also circumvents wasting time spent performing a clear of each pixel at the beginning of 
rendering a frame, instead marking tiles as cleared and treating them appropriately when 
accessed. Screen clearing may sound like a trivial operation, but avoiding it as much as 
possible saves considerable bandwidth. 
 
HyperZ culling gains efficiency by dealing with each triangle just before it is set up to be 
filled. However, the triangle still had to be sent to the GPU. The fastest triangle to render 
is the one never sent down the pipeline at all. Towards this end, techniques have been 



developed to deal with groups of triangles. On the CPU it is common to use frustum 
culling, in which each object is given a bounding box or sphere. If this bounding volume 
is found to be outside the view, none of the objects inside the volume need to be sent 
down the pipeline. The technique is further improved by nesting volumes inside larger 
volumes, in a hierarchy, so that such culling can potentially ignore vast amounts of data 
with a few simple tests. 
 
However, such CPU processing does not remove any objects inside the frustum that are 
hidden by other objects. GPUs have support for higher level occlusion culling, in which 
an object such as a bounding box can be sent through the pipeline to check whether any 
part of the box is visible. If it is not visible, all the objects inside the box do not have to 
be sent down the pipeline. The problem is that reading back object status from the GPU 
to the CPU is expensive. Methods such as batching results of a number of tests into a 
single query, and the faster transfer speed of PCI Express, make such techniques more 
feasible, especially for very large data sets [Wimmer05]. This sort of processing is at the 
limits of how much of the pipeline the current GPU can handle, and it needs to do so in 
conjunction with the CPU’s guidance. 
 
 
The Future 
 
Moving model data onto the GPU for reuse recalls how graphics acceleration worked 
decades ago, in which a vector display system was loaded with a list of lines and dots to 
display, and the user would control the transforms applied and the visibility of objects. It 
will be interesting to see whether the principle of the wheel of reincarnation will apply 
someday to current systems. This idea, first noted back in 1968 by Myer and Sutherland 
[Myer68], can be seen when a new piece of peripheral hardware is developed and 
elaborated. The functionality of this system is eventually folded back into the controller’s 
domain, and the cycle begins anew with another piece of peripheral hardware. 
 
That said, the GPU, because of its speed advantages, is often thought of in different terms 
than the CPU. A GPU is not a serial processor, but is rather a dataflow or stream 
processor. It is the appearance of data at the beginning of the pipeline that causes 
computation to occur, and a limited set of inputs are needed to perform the computation. 
This different processing model lends itself in particular to problems where each datum is 
affected by only nearby data. One active area of research is how to apply the GPU to non-
rendering problems of this type, such as fluid flow computation and collision detection 
(visit gpgpu.org). 
 
Another area of graphics hardware design that looks likely to progress further is surface 
representation. The current hardware pipeline deals with vertices as disconnected entities, 
but the new geometry shader changes the rules. Some experimentation has been done 
with on-chip tessellation, such as ATI’s N-Patches, in which a single triangle with vertex 
normals can be used to generate a curved surface. DirectX 10 includes an interface to 
perform tessellation. However, as yet there has been no generalized geometry tessellation 
added to the graphics hardware pipeline for surfaces with connectivity among triangles, 



such as subdivision surfaces. The main question, as with any new feature, is whether it is 
worth the cost.  
 
The amount of functionality in the GPU has grown enormously in just a few years, and 
understanding what is fast and what operations to avoid will lead to new, efficient ways 
to solve old problems. As an example, a fixed platform such as the Sony Playstation took 
developers a few years to fully comprehend and take advantage of its architecture. Games 
produced four years after this console’s introduction were considerably more advanced 
graphically than the original offerings. Unexpected and wonderful new algorithms and 
improvements are on the way, and anyone with a graphics card and a compiler can help 
discover them (including you!). 
 
 
Resources 
 
I have purposely avoided referencing many older research papers and books in this article 
in the interest of brevity. The “historical” material in this article is discussed in depth in a 
book I coauthored, Real-Time Rendering [Akenine-Möller02]. This book’s list of 
references is available at http://www.realtimerendering.com, a site that also includes links 
to a wide range of relevant resources. NVIDIA’s and ATI’s developer web sites are 
particularly useful for understanding the latest developments in the field. In recent years, 
beyond the normal research publication channels such as conferences and journals, a 
number of edited collections of articles have appeared as books. In particular, the GPU 
Gems, ShaderX, and Game Programming Gems book series explain many new 
techniques and give code samples. 
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