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The Light Buffer:

A Shadow-Testing Accelerator

Eric A. Haines and Donald P. Greenberg
Cornell University
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Ray—tracing algorithms are not new. Early ver-
sions were presented by Appel! in 1968 and Gold-
stein and Nagel? in 1971. By 1980, a refined ray-
tracing procedure had been implemented? Unfor-

tunately, the shadow-testing and ray-intersection
routines were taking up nearly 95 percent of total
computational time—a portion obviously unac-
ceptable in practical environments. Thus, subse-

6 0272-1716/86/0900-0006$01.00 © 1986 IEEE IEEE CG&A




quent work in ray-tracing algorithms was devoted
to finding ways to speed up the process. This article
presents a method of accelerating shadow testing,
which is the most computationally intensive part of
ray tracing. To illustrate its significance, let us look
at ray tracing more closely.

A bit about ray tracing

Ray tracing approximates the global illumina-
tion of a scene by tracing rays from the eye through
the viewing plane and into the 3D environment. For
each ray the closest surface intersection point is
determined. Depending on the material properties,
this surface may spawn reflected and refracted
rays, which are recursively traced in the same
fashion. As the ray is propagated through the en-
vironment, a tree of intersection locations is con-
structed for each sample point. The final image
intensity of this point is determined by traversing
the tree and computing the contribution of each
node according to a shading model.

The intensity calculation for each node consists
of two parts. The first part determines if the inter-
section point can be seen from each light source. If
no opaque object blocks the light from the inter-
section point, then the second part consists of using
the attributes of the surface and the light source to
calculate the contribution to the final color inten-
sity of the pixel.

The first operation, called shadow testing, is
normally the most computationally expensive pro-
cess of the ray-tracing algorithm. The reason is that
each object in the entire environment must be
tested to see if it occludes each light source for
every ray intersection point. For scenes with com-
plex lighting schemes the percentage of time re-
quired for occlusion testing can increase to over 80
percent of the total computation times#

A number of methods, based primarily on using
object and image coherence to speed processing,
have been used to accelerate ray tracing calcula-
tions. With object coherence, we use environmental
properties such as bounding volumes or partitions
to speed up ray intersection. Image coherence,
which is view dependent, relies on the fact that a
pixel of a given image is likely to be similar to its
neighbors.

The idea of surrounding intricate objects with
simpler bounding volumes is widely accepted:-
The expensive intersection time for complex poly-
hedrons or parametric surfaces is reduced by using
simpler objects such as boxes or spheres as enclo-
sures. If the bounding volume is not intersected, we
can avoid the test for the more intricate object.
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Another set of methods is based on partitioning
the environment in a variety of fashions. Rubin and
Whitted’ decreased the intersection calculation
time significantly by subdividing the environment
into small orthogonal volumes, which they further
subdivided and accessed hierarchically. Glassner’
and Kaplan® independently researched procedures
based on an octree encoding of the environment
that saved time through an efficient access and
intersection of rectangular volumes. Dippe also
presented a concept for subdividing an environ-
ment for parallel computations?

One method, introduced by Weghorst et al.# uses
a visible surface preprocessor from the observer’s
position. This preprocess took advantage of image
coherence by using a scan-line algorithm to create
an item buffer, which contained the first node of
each intersection tree. Since the average tree depth
in a complex image is often quite low,!® the savings
were substantial.

The light buffer

Our method for reducing shadow testing time
during ray tracing involves generating a light
bufferl! The concept is based on the idea that a
point can be determined to be in shadow, without
having to find which object first occludes it. Such
knowledge can decrease occlusion testing time.
When data is referenced using the direction of the
light ray, a light buffer results. Thus, an idealized
light buffer is defined as having two algorithms:

1. a procedure to partition the environment with
respect to each light’s position

2. aprocedure to test if a given point is in shadow
by using this partitioned definition of the
environment

Bouknight and Kelley!? and Williams!?* have used
similar approaches to perform shadow generation
under limited conditions.

In this section we will describe the partitioning
and shadow-testing routines for environments con-
sisting entirely of opaque polygonal surfaces. Tech-
niques for handling nonpolygonal and transparent
surfaces will be presented later.

Opaque polygonal surfaces

For each light source a light buffer is constructed.
These buffers are modeled on the “hemicube”
buffer concept developed for use in radiosity cal-
culations! A light buffer can be idealized as a cube-
shaped frame surrounding a light source. The cube
is then aligned with the environment’s coordinate
axes, and the cube faces form six windows sur-

7



from

o T eye
> .
-
- f
ray from
source to ‘tace #3
intersection
point object #7
Grid Object Number Face Number z' Depth Value
Square
List m n #
i i i
7 3 6.811758
i i H

Figure 1. Schematic representation of a light buffer.
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Figure 2. Polygon conversion process. In (a) grid
squares are marked for one horizontal scan line; in
(b) they are marked after entire horizontal scan-line
process; and in (c) they are marked after tracing
polygon edges.

rounding the light (Figure 1). Each face is associated
with one of the orthogonal axes within the environ-
ment. The axis perpendicular to a particular cube
face is designated the 7z’ direction, with the edges of
the face defining the x’' and y’ axes. The exact
orientation of the x’ and y' axes is arbitrary and has
no effect on the algorithm.
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Each cube face has a gridwork of squares, with
the number of squares on an edge referred to as the
light buffer’s resolution, or R. Each cell within this
gridwork contains a list of object surfaces that can
be seen from the light. Each grid square is thought
of as a small window through which the light
source can look. The objects that the light can see
through this grid square are saved in that cell’s list.
Franklin!® used a similar concept to reduce the
sorting time of his hidden-surface algorithm.

Each list record contains an object number, sur-
face number, and a relative depth value. The object
number, m, is an integer from 1 to M, where Mis the
number of objects in an environment. The surface
number, 7, is an integer from 1 to N, where Nis the
number of polygons defining an object. The relative
depth from the light is stored as a floating point
number for each list record. The sign bit of these
numbers is used to mark various types of list
records. The records in a grid square list are sorted
in ascending order by depth.

To rapidly determine which object surfaces are
seen within which grid squares, a modified scan-
line algorithm is used. A display scan-line algorithm
determines which polygon is seen at each point on a
grid overlaying the image. For a light buffer the
important determination is which polygonal sur-
faces can possibly be projected onto each grid
square. Because of this difference, the standard
scan-line algorithm must be modified to avoid any
aliasing.

The basic procedure is to cast all polygons onto
each face of the light buffer cube. Transformation,
clipping, and culling are performed for each poly-
gon, six times for each light buffer. Casting consists
of a number of steps. First, each polygon undergoes
a view transformation so that it is in the coordinate
system of the light. Polygons that do not lie within
the viewing frustum are ignored. This test is per-
formed by using the Cohen-Sutherland algorithm!
to determine whether a polygon is possibly within
the viewing frustum.

The polygons facing away from the light are then
culled by determining the polygon’s normal. After
culling, the remaining polygons undergo a perspec-
tive transformation and are projected onto the light
buffer face. An edge table is created for each
polygon that has survived clipping and culling. A
scan-line algorithm is then used to project the
polygons onto the image plane!’” For each hori-
zontal scan line the exact edge intersection points
are ignored; instead, to avoid aliasing, all grid
squares adjoining the part of the scan line covered
by the polygon are marked. This process is shown
for one horizontal scan line in Figure 2a and for all
relevant scan lines in Figure 2b.
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In Figure 2b two squares are not marked by the
scan-line process. One method to avoid this aliasing
is to trace along the polygon’s perimeter. Each edge
is used to mark grid squares until it hits a horizontal
scan line. The result is shown in Figure 2c.

A final test is made to check if each polygonal
surface is marked into at least one grid square. If
not, the polygon is entirely enclosed by a single grid
square, signifying that it was missed by the scan-
line procedures. To correct the oversight, any vertex
of the polygon is cast on the light buffer cube face,
and the grid square intersected is marked.

For each marked grid square, the closest depth
for each polygon is calculated. This depth is used as
arough sorting key during ray tracing to determine
when shadow testing is terminated. To increase
preprocessing speed, computations are first per-
formed on the transformed (image space) data,
then converted back to true depth (object space)
values. The polygonal records are inserted in the list
associated with each grid square in ascending order
by depth.

The algorithm is repeated for each polygon of
each object. At the end of this process, we have
information about one face of the basic light buffer
cube. The process is repeated as needed for each of
the six light buffer faces for each light source.
When all light buffers are completed and ready for
use, the environment has been effectively parti-
tioned and greatly reduced shadow testing times
are now possible. To illustrate this procedure for
one grid square, the environment of Figure 3a has
been processed, with the basic list shown in Figure
3b.

Cube coherence can be used to reduce the num-
ber of calculations by casting an object onto only
those light buffer faces that can view it. To begin
the process, a point within the object is cast on the
buffer, and the face hit is determined. The object is
cast on this face, and the edges of the light buffer
that were used for clipping are recorded. The object
is then cast on only the appropriate contiguous
faces. Cube coherence reduces the time needed to
create a light buffer by approximately half that
ordinarily required.

During shadow testing the light buffers are
accessed for each view ray intersection point, and a
list is retrieved of all surfaces that might occlude
the light ray. Each polygon in the list must be tested
until an occlusion is found or until the depth of the
potentially occluding polygon is greater than the
intersection point.

As with standard ray-tracing algorithms, inter-
section calculations can be accelerated by creating
simple bounding volumes that encompass compli-
cated objects#s If the bounding volume is not inter-
sected, then the complex object within will not be
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Figure 3. Creation of a grid square list. We begin
with (a) the basic environment and (b) correspond-
ing basic list; (c) is the result of inserting a bounding
volume record into the basic list; and (d) is the
result of inserting maximum z’ depth records and
pruning the list.

intersected. A similar bounding volume approach
can be used to create the light buffer lists. Within
the light buffer, bounding volumes are added when
the number of polygons affecting a grid square for
an object exceeds a given value. A threshold of six
was used in the implementation presented.

Except for a special negative identifier, a bound-
ing volume record is similar to a polygonal surface
list record. The depth is set to the depth of the first
(and closest) surface of the enclosed object and the
bounding volume record is inserted immediately
before this surface. All subsequent records of poly-
gons belonging to that object must then be moved
to form a contiguous group following the bounding
volume record, regardless of their depth values. An
insertion of a bounding volume record into a basic
list is shown in Figure 3c.

A second method to speed intersection testing is
based on the observation that if an object fully
covers a grid square, all intersection points beyond
that object will be in shadow. The method is similar
to the “surrounder” test performed in the Warnock
algorithm concerning the area subdivision of visible
surfaces!® This test is performed on all convex
objects and all polygons to determine the minimum
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depth of full occlusion. A full occlusion record is
then inserted into the list using this depth. Full
occlusion records are flagged by assigning a nega-
tive z’ depth. The effect of a full occlusion record is
to create a shadow volume for a cell that begins at
this full occlusion depth.

When all objects have been projected on the cube
face, the lists can be scanned and simplified. This
simplification saves both memory and time during
shadow testing. If there is only one polygon in a list,
then the list can be deleted, since that polygon has
no other surfaces to cast a shadow on, nor can it
occlude itself. Similarly, all polygons beyond a full
occlusion record can be deleted, since all objects
beyond this record are automatically in shadow. If
there are no deeper polygons, the full occlusion
record itself can be deleted. The result of inserting
maximum z'-depth records in the list and pruning it
is shown in Figure 3d.

Accessing light buffers

When an environment is ray traced, the light
buffers are accessed during shadow testing. A light
vector is generated from each light source to the
intersection point of the view ray and the surface
(Figure 1). The surface normal is checked to deter-
mine if it points away from the light. If the surface
faces away from the light, it is in shadow, and
testing ends. Otherwise, the list from the appropriate
light buffer grid square is retrieved and used to test
for occlusion. The first step is to find which grid
square the light vector passes through. Because of
the cube geometry, the face is quickly determined
by finding the largest component of the ray and
noting its sign (for example, a ray with vector [x,y,7]
=[3.11,-5.04,-1.66] will hit the -y face). The remaining
two vector components are converted to grid coor-
dinates of the face, and the appropriate grid square
list is retrieved and used to test for shadowing.

The last record in the list is examined. If it is a full
occlusion record and its depth is less than the
intersection point’s z' depth, then the intersection
point is in shadow, and no more testing is necessary.
If this test fails, then the list is traversed from the
beginning. If a record is a polygonal surface, it is
tested for intersection. Intersection tests are not
performed in two cases. The first is when the
polygon in the list is the surface intersected, called
the base surface. Since this surface can never
occlude itself it is not checked.

The second case is when the polygon and the base
surface are part of the same object, and the object
is convex. A convex object cannot cast a shadow on
itself and so can be ignored.

Records of the bounding volume list are handled
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differently. The bounding volume is tested for in-
tersection. If there is no intersection, then the sur-
faces within the bounding volume are skipped. In
the special case when the bounding volume is the
parent of the base surface, then the bounding
volume has automatically been hit and the list
examination continues normally.

After a polygonal surface or bounding volume
record has been examined, the process continues
and the next list record is retrieved. A test is made
to determine if the new record is beyond the inter-
section point. If the z’' depth of the new record is
greater than the base point intersection depth, one
of two events occurs. If the record is not a part of a
bounding volume list, testing is finished. If the
record tested is within a bounding volume, the
testing skips to the first record not within the
bounding volume. Records within a bounding
volume are not sorted by depth with respect to the
rest of the list, so testing must continue. Records
are retrieved until either a surface is hit, the '
depth of list records is beyond the base point, or the
end of the list is reached. In the first case the base
point is in shadow; otherwise it is illuminated by the
light.

Nonpolygonal objects

Our discussion so far has dealt only with poly-
gonal objects. The techniques used to insert poly-
hedrons into a light buffer can also be generalized
to nonpolygonal objects. To insert a nonpolygonal
object, we begin by forming a polygonal hull that
encloses the nonpolygonal object (Figure 4a). Cast-
ing this polygonal hull onto each light buffer identi-
fies the grid squares that may contain the complex
object. The polygonal hulls created for this task
cannot be used for full occlusion testing, however,
because each occludes an area larger than the
object it encompasses. To take advantage of the
increased efficiency from using full occlusion
records, a polygonal mesh enclosed by the object
can also be generated and tested. These full occlu-
sion polygonal meshes are often generated by the
same methods that created the enclosing hulls.
Figure 4b is a standard list, and Figure 4c is the list
after an exterior polygonal hull for a nonpolygonal
object has been inserted.

Transparent objects

Transparent objects can also be added to the light
buffer scheme with minor changes in the algorithms
to insert an object and access the list (Figure 4a).
Transparent objects are inserted into the light
buffer in a similar fashion to opaque objects. For
polygonal objects, no faces can be culled because
all their surfaces are visible from the light source.
Also, because the objects cannot fully block the
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light, no full occlusion tests are made. Finally, all list
records of these objects are flagged as transparent.
Figure 4d shows how a transparent surface is in-
serted into a light buffer grid list.

To use transparent records, the procedure for
processing the light buffer list during shadow test-
ing must be modified. No transparent objects are
tested before opaque objects, since if the intersec-
tion point is in shadow, testing the transparent
objects is superfluous. Whenever a record of a
transparent object is encountered, the data is copied
to a temporary list. If no opaque object occludes the
light, the list of transparent objects is intersected
and used to calculate the absorption of light.

Object coherence

Object coherence can also be used to decrease
shadow testing time. It is based on the observation
that most object shadows in a scene have a hori-
zontal width of more than one pixel. If an object
blocks a light source from contributing to a pixel’s
intensity, then the same object is likely to block the
same light for an adjacent pixel.

The algorithm requires saving and updating an
object identity number for each light during pro-
cessing. If a point is shadowed from a light by some
object, the identity of the object casting the shadow
is saved for that light. The next time the light is
tested for occlusion, the associated shadowing ob-
ject is first checked for intersection. If intersection
occurs, testing ends, with the light source still
occluded by the object. If the object is not hit, then
the identity number is reset to the null flag and
testing continues normally. When this algorithm
was used with light buffers of 10 X 10-inch resolu-
tion, shadow testing times were reduced by up to 33
percent over standard methods.

An interesting effect of object coherence is that
the efficiency increases as the resolution of the
image increases. The reason is that, when an en-
vironment is rendered at a higher resolution, its
objects cast shadows on a larger number of pixels.

Results and timing tests

Figures 5 through 11 show the environments
that were modeled and rendered to compare the
light buffer algorithm with the traditional shadow
testing method. These environments differ greatly
in complexity, item shapes, number of light sources,
and specular properties. For each ray-traced image,
we provided processing statistics for the creation of
light buffers of various resolutions, and we compare
them to the statistics of an enhanced ray-tracing
algorithm.

Intersection trees were generated using the
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Figure 4. Insertion of nonpolygonal and transparent
objects. In (a) we form a polygonal hull to enclose
the nonpolygonal object. Into list (b) we (c) insert
the hull and then (d) a transparent surface.

visible-surface preprocess discussed by Weghorst
et al# Rectangular or spherical bounding volumes
were placed around all objects, and hierarchical
clustering was performed as applicable. The com-
bination of these techniques alone reduced com-
putation times for typical environments by a factor
of approximately four or five when compared to
standard ray-tracing algorithms.

The light buffer approach further reduced the
computation times by a significant amount. The
overall processing time of the ray-tracing algorithm
was generally reduced by an additional factor of
two to four. For each test, more detailed observa-
tions are made about the timing results. As the light
buffer resolution increased, the number of poly-
gons per square went down, fewer bounding
volume records were generated, and more full
occlusion records were created. Thus, the shadow
tests needed per ray drops noticeably as the light
buffer resolution rises, although the overall shadow
testing time does not fall to the same levels because
of the additional overhead involved.

All computation times are listed in minutes of
CPU time on a VAX 11/780. Test images were
calculated at a resolution of 512 X 480, except
where noted. No antialiasing was performed for the
tests, nor was the object coherence algorithm per-
formed. “Miscellaneous” reflects the time spent
primarily on bookkeeping and file I/O. The average
tree size is the mean number of intersection nodes
generated for each ray from the eye. “Shadow tests
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per light ray” is the average number of polygonal
surfaces and nonpolygonal objects tested for inter-
section per shadow test light ray. “Total number of
list items” is the total for all grid squares for all light
buffers. “Nonzero grid squares percentage” is the
ratio of grid squares with lists containing at least
one object divided by the total number of grid
squares. “Average maximum of list items” is the
mean of the highest number of list records in a grid
square for each light buffer.

Note that although statistics are presented for a
lower resolution, the images presented in Figures 5
through 11 were rendered at a resolution of 1280 X
1024 with antialiasing performed using pixel subdi-
vision techniques.

Conclusions and future outlook

It is well-known that standard ray-tracing tech-
niques are still computationally too expensive for
practical use. By far the largest portion of the
computation time is devoted to shadow testing,
particularly for complex lighting situations.

For every view ray we must test if the surface
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intersection is occluded from each light source. The
method we have described uses a light buffer to
accelerate the shadow testing portion of ray-tracing
algorithms. This computationally expensive opera-
tion must test all polygons for all rays for each light
source. The use of the light buffer substantially
improves the performance of shadow testing by
efficiently partitioning the environment. For exam-
ples tested, shadow testing times were reduced by a
factor of four to 30.

The benefits are even greater for dynamic image
sequences, since for static environments the light
buffers do not have to be recalculated. The method
is generally applicable, being suitable for polygonal
and nonpolygonal environments with opaque or
transparent surfaces. At present, the approach
works best for point light sources, and resulting
images do not contain soft shadows or penumbrae.
Another limitation of the light buffer method is that
storage requirements for high resolutions or large
numbers of lights can become excessive.

We see the need for further research on a number
of topics. The creation of light buffers for linear and
area light sources20.2! would enhance picture quality
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and make these computationally expensive algo-
rithms much faster. One concept that could extend
the use of the method to these sources is that light
buffers can be concatenated. Performing some type
of adaptive subdivision on grid squares that have a
large number of objects is also worth researching.
Finally, grid list restructuring and more efficient
insertion algorithms for various object classes need
exploration. [ |
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